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The theory developed aims to explain erratic motions that have been observed 
experimentally to be performed by small bubbles in liquids irradiated by sound. An 
exact relation between dynamic and kinematic integral properties of any bubble is 
used as the basis for calculating the propulsive effects of deformations from spherical 
shape. The analysis deals first with arbitrary axisymmetric perturbations, such that 
the equation of the bubble’s surface is representable in terms of zonal spherical 
harmonics, and then more general deformations are treated. It is shown that self- 
propulsion is accountable wholly to interactions of surface modes n and nf 1 (n = 
2,3 ,  . . .). The resulting velocity W of the bubble’s centroid is found to depend on the 
relative orientation of the interacting modes, IUl being greatest when they are 
coaxial but the direction of W having the more sensitive dependence. Supported by 
the theoretical results, an interpretation of the observed erratic motions is presented 
finally, and a few experimental observations are noted. 

1. Introduction 
The calculations to be presented were completed in the course of collaborative 

experimental and theoretical research on the behaviour of small gas bubbles in 
liquids subject to acoustic standing waves. The investigation as a whole which has 
explored a variety of phenomena will be reported in due course (Ellis &, Benjamin 
1990) ; but the present piece of theory deserves a separate account, having several 
points of incidental interest. I ts  main import is to account plausibly for a curious 
phenomenon first noticed by Gaines (1932), which has been reported by Kornfeld &, 
Suvorov (1944) and several others since but has not until now been explained 
decisively. 

In the original experiments, intense sound waves in water were generated by near- 
resonant longitudinal vibrations of a nickel tube, which were excited electronically 
by magnetostriction. In  Kornfeld & Suvorov’s experiments the frequency of the 
vibrations was about 7.5 kHz. When their amplitude was about 0.005 mm, tiny air 
bubbles were observed to form on the flat end of the tube and to move over the 
surface at a comparatively slow rate; but occasionally a few of the bubbles detached 
from the surface and rushed about rapidly within the liquid. Called ‘dancing 
bubbles ’ by Gaines, they moved in zig-zag paths reminiscent of Brownian motion. 
When the amplitude was raised to  about 0.01 mm or above, a whitish cloud was 
observed over the end of the vibrating tube, consisting apparently of many tiny, 
rapidly moving bubbles. Kornfeld &, Suvorov presented photographs of bubbles 
attached to the end of the vibrating tube, which show them to oscillate in various 
regular patterns of deformation, depending on bubble size. Taken with spark 
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illumination, other photographs of detached, vigorously dancing bubbles show them 
to execute wild variations in shape and sometimes disintegrate. 

The parametric excitation of shape oscillations in free bubbles pulsating radially 
in a sound field was proposed by Benjamin & Strasberg (1958) and Strasberg & 
Benjamin (1958; see also Benjamin 1964) as a cause of the erratic motions observed. 
This example of parametric excitation, such that the shape oscillations have half the 
frequency of the sound, is explainable by the linearized equation for the time- 
dependent amplitude of asymmetric perturbations relative to a pulsating spherical 
bubble, which equation is reducible to Mathieu’s equation approximately and was 
first derived by Plesset & Mitchell (1956; see also Hsieh & Plesset 1961). The precise 
rcason why bubbles so excited may be propelled along an erratic path has not yet 
been exhibited, however, and the principal aim of this paper is to answer the 
outstanding question. 

The mechanism now a t  issue was virtually anticipated by Saffman (1967), who 
showed by an example that a deforming, nearly spherical body can propel itself in 
an infinite perfect fluid. Saffman deserves full credit for the idea to be re-examined 
here; but the specific results given by him for the relevant example appear to be in 
error, even to the extent of predicting a propulsive effect with the wrong sign. His 
account was drastically abbreviated, merely quoting the results of a ‘straightforward 
but tedious calculation’; and a reappraisal in more detail than given by him is 
warranted. The reasoning needed to secure the prediction of self-propulsion due to a 
general form of deformation is delicate and demands a fuller account. 

The method to be adopted differs from Saffman’s although it is consistent with the 
principles expounded in his paper. The analysis will be based on an exact integral 
relation derived in a recent paper about Hamiltonian theory for motions of bubbles 
in an infinite perfect liquid (Benjamin 1987). Introducing notation required to 
express this relation, let $ denote the velocity potential for the motion of the liquid 
surrounding a simply connected bubble, and let @ denote the evaluation of $ a t  the 
surface X of the bubble. The liquid is taken to have unit density and to be stationary 
a t  infinity. Being a harmonic function of position x in the exterior domain, $ is for 
any S uniquely determined by @ and the asymptotic condition IV$( + 0 as 1x1 + m. 
Then the linear Kelvin impulse of the motion (Lamb 1932, $5 120 and 121) is defined 
by 

I =  - h d s ,  (1.1) s, 
where n is the unit normal to  S directed into the liquid. In  the absence of external 
forces such as gravity and on the assumption that the interior of the bubble has zero 
inertia, the vector I is an invariant of the motion ; and for present purposes attention 
can be confined to  the case Z = 0. 

In terms of spherical coordinates ( r ,  8, $), the asymptotic form of the velocity 
potential for r+  00 is in general 

M 1  
r r2 

$ = -+-((A,cos8+A,sin8cos$+A3sin8sin+)+O (1 2 )  

where the monopole coefficient M and dipole coefficients Ai respective to orthogonal 
directions i = 1,2,3 are functions of time t alone. Finally, we introduce the vector 

C =  x d v = x Y .  s, 
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Here V denotes the space constituting the interior of the bubble, dv represents the 
element of volume (i.e. r2sinOdrdBd+), and 9'- is the volume of V.  Thus x is the 
position of the bubble's centroid. 

The general relation needing to be recalled is that, for all time t ,  

dC 
dt 

I i + A + 4 7 c A ,  = 0 (i = 1,2,3)  

(Benjamin 1987, equation (2.18)). In  the cited paper the three identities (1.4) were 
shown to follow, according to a version of Noether's theorem, from the Gallilean 
invariance of the hydrodynamic problem formulated as a Hamiltonian system ; and 
the results (1.4) are confirmable otherwise as follows. With reference to the harmonic 
functions $ and each xi, Green's theorem shows that the surface integral of 
xi a$/&- $ax,/an over S equals the same integral over a sphere of radius R enclosing 
the bubble. Noting that axi/an = ni and writing @(n, for a$/an on S (cf. Benjamin 
1987, p. 351), we therefore have 

ls (xi @(n)  - @n,) ds = ~ ~ ( x , $ , - n ~ $ ) , = . R ' s i n ~ d O d ~ .  (1.5) 

The second integral on the left of this equality is Ii by the definition ( l . l ) ,  and the 
first integral is evidently dC,/dt. I n  the limit R --f 00,  the sum of the integrals on the 
right is found to be -47cA,; and thus the relation (1.4) is confirmed. It should be 
acknowledged that (1.4) generalizes a well known result for rigid bodies translating 
in a perfect liquid (cf. Batchelor 1967, p. 401, eqn. (6.4.8); Lighthill 1978, pp. 38,39). 
In  the absence of external forces (1.4) holds for all t irrespective of changes in shape 
or volume. 

In  $8 3 and 4 this relation will be used to calculate the axial velocity dZl/dt enforced 
by time-dependent deformations of a bubble that remains symmetric about the xl- 
axis, its surface being representable by series of zonal harmonics. In 55 the analysis 
will be extended to deformations of more general shape; and in $6 the theoretical 
results will serve to  explain the observed erratic motions of small bubbles in sound 
fields. A sample of our experimental results is included finally in $6. The use of (1.4) 
explifies the advantages of exact, generalized integral properties as predictors of 
second-order quantities such as dzl/dt : the results are obtained decisively without 
need to approximate the nonlinear kinematic and dynamic boundary conditions a t  
S to the same order. A comparably advantageous use of another integral relation for 
the motions of bubbles, a virial equation, was presented in a recent paper (Benjamin 
1989). 

2. First-order and second-order perturbations 
We focus attention first on axisymmetric perturbations about a sphere of radius 

a, but we shall show in $5 how the results can be extended to  more general 
perturbations of shape. In terms of spherical coordinates ( r ,  8, +) the surface S of the 
simply connected bubble is taken to be described by the equation 

in which p = cos0 and P, is the Legendre polynomial of order n (P&) = 1, 
Pl(p) = p) .  The coefficients en (n  = 0,1 ,2 ,  . . .) are functions oft alone; and because the 
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set {Pn},"_o of orthogonal polynomials is complete on [ - 1,1] ,  equation (2.1) represents 
an arbitrary time-dependent surface that remains axisymmetric. The en with n 2 2 
are taken to be O(e) ,  where E is a representative small value, but c0 and el are for now 
taken to be O(e2) .  Generalizations relaxing these temporary assumptions will be 
explained in $6. 

A corresponding expression for the velocity potential is 

Ba3 Aa4p an+3{8n +O(c2)}Pn(p)  c # = 
r r2 n-2 ( n + l ) r n + l  

where B and A are O(E'). Note that consequently this expression satisfies to O(e)  the 
kinematic condition applying at the surface S described by (2.1) (see (4.3) below). 
Although B and A are of course related to  eo and el, there will be no need at present 
to evaluate B, eo and el. The object is to find A ,  which is identifiable with -A1/a4 in 
(1.4), and this object is achievable directly from the condition that the axial 
component of Kelvin impulse should be zero, say I ,  = 0. (Needless to say, the axial 
symmetry implies It  = 0 for i = 2,3 . )  For the present purpose, use of this integral 
condition obviates the need to satisfy the kinematic and dynamic boundary 
conditions explicitly to O(E').  

For substitution in the integrand of I,, it appears a t  once from (2.2) that 

-@/a2  = B + A p +  c (n+ l)-'{kn+O(e2)}Pn(p) - c C kne,Pn(p)Pm(p)+O(c3) .  
00 0 0 0 0  

n=2 n=2 m=2 

(2.3) 

Next, because to  O(e)  the unit normal n to  S is (1 ,  -yo, O ) ,  where y = r / u  as given by 
(2.1), its axial component is 

n1 = cos 0 + vS sin 0 
00 

= p- c en(l-p2)Pn(p)+O(e2). 
n-2 

Finally, the element of surface area is noted to be 

ds = 2nr2 sin 0 d0 

00 

Expressing the assumption that no external force acts on the bubble, we have 

I ,  =-  @n,ds = 0 s, 
for all t .  Upon substitution of (2.3)-(2.5) in this integral, all terms of first order in e 
are seen to cancel because Pn(p) with n 2 2 is orthogonal to p = Pl(p) on [ - 1,1].  To 
O(e2)  the result obtained from (2.6) is that 

m m  

where 
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Having been derived with comparative ease by use of (2.6), the result (2.7) for A 
to O(2)  might otherwise be obtained by development of second-order approximations 
to the kinematic and dynamic boundary conditions. The latter method would be 
necessary if the interrelations among all the et(t) including Eo( t )  and el(t) were to be 
found; but this more complicated task can be avoided without loss a t  present. 
Equations (1.4) and (2.6) capture the relevant dynamical principles exactly, and our 
second-order approximations to these equations will suffice to account for the 
phenomenon principally in question. 

3. Evaluation of coefficients 

Legendre polynomials 
To evaluate the numbers Cn,m in (2.7), consider the recurrence formulae for 

1 
PPn = 2n+l {(n+ 1V’n+1+ nPn-11, 

together with their orthogonality and normalization 

i f m + n ,  

/:lpn(p)pm(p)dp =[::+ i f m = n  

(cf. Whittaker & Watson 1927, $3 15.14, 15.21 ; Jeffreys & Jeffreys 1956, $524.07, 
24.10). It is at once seen that Cn, = 0 unless m = n f  1 ; and moreover the second 
recurrence formula shows that Cn,n-l = 0, because with m = n- 1 the two non-zero 
integrals composing the right-hand side of (2.8) cancel. I n  the evaluation of Cn,n+l, 
factors n(n+ 1) (2n + 1) are found to cancel between the numerator and denominator, 
and the result is 

(3.1) (n = 2,3,  . . .). Cn, n+l - 
2 

2n+3 
Hence (2.7) reduces to 

“ O 3  
n-2 2n+ 3 A = C -  inen+1. 

Recalling that I ,  = 0 and A ,  = -a4A in (1.4), and writing 

dC,/dt = $7ca3WI, 

we may conclude from (1.4) and (3.2) that 

(3.3) 

For example, if only e2 and e3 are non-zero, (3.3) shows that 

w, = +iz e3 + 0 ( € 3 ) .  (3.4) 

[This result appears irreconcilable with the result given by Saffman (1967, pp. 388, 
389). He dealt with the case of a deformable, nearly spherical body with density 
equal to that of the surrounding liquid; but his result (15) is immediately adaptable 
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to the present case of a deforming bubble. (Note that the second 2 in the factor on 
the right-hand side of his (15) is evidently a misprint ; by comparison with (16) it 
should be 3.) For a bubble his result (16) becomes W, = 3z(3e2 6, - 26, e3)  + O(e3) ,  which 
is incompatible with our (3.4) above.] 

4. Alternative derivation 
A check on the crucial result (3.3) is provided by the following argument. Suppose 

that the centroid of the deforming axisymmetric bubble remains a t  the origin, so that 
dC,/dt = 0 in (1.4). To ensure this property, fictitious external forces need to be 
applied to the surface X of the bubble, generating an axial Kelvin impulse which (1.4) 
shows to be fl = -47~2,.  Thus a calculation of A,, namely the value of A ,  subject to 
the constraint C, = 0, will reveal the net axial impulse that the external forces must 
deliver in order to arrest movement of the bubble’s centroid. Hence the velocity Wl 
of the centroid in the absence of external forces can be inferred by d’Alembert’s 
principle. 

According to (2.1), the constraint 

1 

C, = 27~a~[-~ [l +q(p)I4pdp = 0 

is found to require that 

with 

n-2 m-2 

Note that Dn, 
(4.1) and (4.2) give el = -(27/35)e2e3 (cf. Saffman 1967, (13)). 

in e this condition is expressed by 

= 0 unless m = n k 1 .  When only e2 and e3 are non-zero, for example, 

Now consider the kinematic condition at the bubble’s surface 8. To second order 

9t+a-2(1--lL2)97C#7C(a,pu) = u - l # ~ ( a , p ) + ~ ~ ~ ( u , p ) q .  (4.3) 

Substituting for 9 from (2.1) and for # from (2.2), then multiplying each term by ,u 
and integrating over [ - 1,1], we deduce that 

m m  

K = ?jl + C En, &,em + O(e3)  
12-2 m-2 

(4.4) 

with 

Note too that En, = 0 unless m = n & 1.  
From the properties of Pn recalled a t  the start of $3, it is further found that 

9(n+ 1)  3(n + 2) 
Pn, n+l = 2(2n+l)(2n+3)’  = 2(2n+ 1 )  (2n+3) ’ 

9n 
2(2n- 1 )  (2n+ 1 ) ’  

- Pn, n - l =  En, n-1 - 
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Hence the combination of (4.1) and (4.4) proves that 

I 

Thus A is -+ times A given by (3.2). But the two results are in fact equivalent. 
Recall that the second-order axial impulse imparted to the liquid by the external 
forces needed to keep C, = 0 is f, = - 4 7 4  = 4na4A”, which is negative if A given by 
(3.2) is positive. According to d’Alembert’s principle, the centroid will move in the 
direction opposite to that of f, when external forces are absent; and moreover the 
velocity W, of the centroid will then be given to second order by $na3W, = -fl, 
because to zeroth order the virtual mass of the bubble is 3m3 (Lamb 1932, p. 124). 
It follows that W, = -6a2, whence (4.6) reconfirms the result (3.3). 

5. Shape perturbations that are not axisymmetric 
Plainly, as the hydrodynamic problem has the 0(3 )  symmetry group, the 

propulsive effect expressed by (3.3) is the same in any direction about which 
interacting surface modes n and n + l  are both axisymmetric. The condition of 
coaligned axial symmetry is an arbitrary simplification, however, having no evident 
physical cause ; and it is highly pertinent to the interpretation given later that we 
should inquire into the effects of departures from this special condition. 

To represent more general deformations of the sphere, the expansion (2.1) has to 
include terms in PE(p) (cos k$, sin k$), with summation over k = 1 ,2 , .  . . , n as well as 
n. A calculation of the second-order dipole coefficients Ai subject to Ii = 0 (i = 1,2,  
3) can proceed by an obvious extension of the procedure in $$2 and 3, using 
recurrence formulae and integral properties for the orthogonal sets of associated 
Legendre functions {Pz(p))c- l .  But the calculation is complicated, and little of 
interest is easily revealed by it. The following comparatively simple argument 
suffices to demonstrate the relocation and diminution of propulsive effects when 
interacting surface modes cease to be coaxial. 

In the equation for S generalizing (2.1), suppose that the terms O(e) include a mode 
n+ 1 that is symmetric about the axis from the origin to the point (0, I,?) = (0,O) on 
the unperturbed sphere, and also include a mode n that is symmetric about the 
axis through (el, 9’) where el 4 0. Thus ~ ( 0 ,  $) includes the sum of E , + ~ P ~ + ~ ( ~ )  = 
en+,Pn+,(co~ 0) and e,P,(cosy), where 

cosy = cos 0 cos 6 +sin 0 sin el cos (I,? -$’). 

Our object is to calculate the direction and magnitude of the contribution by these 
two terms to the second-order vector W = dn/dt, which we know to be given by (3.3) 
in the case 6 = 0. 

The addition theorem for spherical harmonics is that 

(n-k)! 
P,(cosy) = P,(cos0)P,(cos0’)+2 ~ 0) P : ( ~ ~ ~  0’) cos k($- y )  

k-1 (n  + k) ! 
(5.1) 

(Whittaker & Watson, 1927, p. 345; Jeffreys & Jeffreys 1956, 524.13). Retracing the 
steps whereby the expression (3.3) for W, was derived in $52 and 3, one notices from 
(5.1) that in the present case no term of the summation over k contributes to W,, 
because each prospective contribution to the second-order terms in the result for A ,  
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Axis of mode n 
/ 

I 
I 
I 

\ I 

Axis of mode 
n+ 1 

FIGURE 1 .  Deposition of scaled velocity w of propulsion in meridional plane common t o  mode 
n+ 1 with axis 0 = 0 and mode ?L with axis 0 = 8’. 

deriving from (2.6) is cancelled by integration with respect to +b over [ 0 , 2 x ] .  From 
(5. l ) ,  moreover, the result for A ,  and hence W, is evidently the same as before except 
that 6, is replaced by e,P,(cos@’). Thus, writing cosS’ = p‘, we infer the result 

As before, because Cn, n-l = 0 for all n, no term in E ,  is presented in ( 5 . 2 ) .  It also 
appears from the properties of C,,m noted in $3  that, when r,~(S,+b) includes any 
number of modes n = 2 ,3 ,  . . . composed in pairs as a t  present, each with a respective 
value of p‘, the result (5 .2)  is generalized by summation over n. 

In  particular, when the orientations of the modes n and n+l in the present 
example are exchanged, the mode n being then symmetric about the original axis 
0 = 0, the corresponding result is 

W,(P’) = JK(l)pn+l(p’). (5.3) 

Equivalently, (5.3) is the component of W in the direction of the axis through (S’, 
@’) in the present example. The facts implied by (5.2) and (5.3) are illustrated in 
figure 1,  which shows how the vector w = W/W,(l) may be calculated. 

Obviously w lies in the plane +b = 9’ through the origin, and so henceforth we can 
suppose +b‘ = 0 without loss of generality. Let 8 = - A  give the direction of w in this 
plane. Figure 1 shows that 

and 

There follows directly 
I w1 = IWI cosh = P,(p.’) 

IWI cos (A+@’) = Pn+l(p’). 
(5.4) 

(5.5) 

whence A can be calculated and IwI is then given by P,(p’) ( 1  + tan2 A);. Note that A 
passes through 90’ (or odd multiple of go’), and the radical just written changes sign, 
as jd passes through a zero of P,. 
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FIGURE 2. Values of h (degrees) and Iwl plotted against 8' (degrees), giving direction 8 = - A  and 
magnitude of scaled velocity w of propulsion due to interaction between mode 3 with axis 8 = 0 and 
mode 2 with axis 0 = 8'. 

The result (5.5) may be derived alternatively by finding the dipole coefficient A, ,  
and hence w, according to (1.4), respective to the direction (in, 0) that is perpendicular 
to the axis of the mode n + 1 in the meridional plane q5 = 0 shared by both modes. 
It appears from (5.1) that, in the calculation ofA, to  second order from the condition 
I ,  = 0, the only contribution to the coefficient of arises from the first term 
(k = 1) in the summation over k. Passing over the details, we quote the outcome 

which agrees with (5.4) and (5.5). 
In  the case n = 2, the result (5 .5)  reduces to 

Values of h and (wJ calculated from (5.6) and (w} = $(3p'2-1) /cosh = 
+(5,d4-2,uf2+ 1): are plotted against 8' between 0 and 90" in figure 2 .  It may be seen 
that as 8' increases from 0, a t  which A = 0 and IwI = 1, the angle A of the vector w 
steadily increases while its magnitude IwI first decreases, then passes through a 
minimum value l/d5 = 0.44721 and increases to the value 0.5 at 8' = 90". Note also 
that A = 180" a t  8' = 90". Thus the direction of the propulsive effect is reversed, and 
its magnitude halved, when the axes of the modes n = 2 and 3 are changed from 
alignment to being orthogonal. 

Both these conclusions can be expected. Consider how the added-mass coefficients 
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for an ellipsoid of revolution vary as the eccentricity e of the meridian is varied near 
to zero. When e > 0 and the ellipsoid is prolate, the added-mass coefficient for axial 
motion is decreased from $nu3 and that for sideways motion is increased from $na3. 
The direction of the changes is reversed when e < 0 and the ellipsoid is oblate. 
Moreover, the rate a t  which the first (axial) coefficient varies with e at e = 0 is found 
to be in magnitude twice that for the second (sideways) coefficient (cf. Lamb 1932, 
@114, 373; Milne-Thomson 1968, 516.54; Kochin, Kibel & Roze 1964, 57.8, figures 
150, 152). For small e2, the mode of deformation described by the zonal harmonic 
P2(p) in (2.1) is ellipsoidal; and the propulsive effect of interactions between modes 
2 and 3 in a deforming bubble is accountable to variations in added mass that are out 
of phase with departures from fore-and-aft symmetry (due to the mode with n = 3; 
cf. Saffman 1967, p. 389). The two facts noted at  the end of the last paragraph are 
thus explained. 

Regarding figure 2, note finally how A and IwI vary with 8' outside the range [0, 
90'1. As is geometrically obvious in the example, h is an odd function and IwI an even 
function of 8'. Also I wI is an even and h - 180" an odd function of 8' - 90". 

6. Discussion 
Consider the situation when just two aligned modes n and n t l  are excited 

parametrically into vibrations a t  frequency w .  According to (3.3), the centroid of the 
bubble then acquires a mean axial velocity I; t f ,  which is non-zero unless en and 
are in phase. Writing E ,  = in sin (wt+ a )  and = 2,+, cos ( w t + P ) ,  we have in 
general 

wa6,i,+, c0s(a- /3)+0(€~) .  
9 w -  

- 2(2n + 3) 

Furthermore, when the axes of the two modes cease to be aligned, the calculations 
in $5 show that the vector mean velocity W of the centroid diminishes in magnitude 
from the value (6.1), although a t  most to only about 50%; and the direction of w 
is remarkably sensitive to the angle 8' between the axes. The rate of dependence 
Idh/d8') varies between about 1 and 3 in the case n = 2 illustrated by figure 2, and 
it increases with n > 2. 

Figure 3(a) shows the shapes of a bubble a t  four successive stages in the cycle 
where interaction between modes 2 and 3 is producing maximum propulsive effect 
(i.e. a = p, 8' = 0).  Figure 3(b) shows the corresponding shapes when 8' = 54.74' (so 
that P.(p') = 0) and consequently W is perpendicular to the axis of the mode 3. 

Before highlighting the explanation for the observed erratic motions, we should 
note two important refinements of the foregoing theory. 

Relaxation of assumption el = O(e2)  

If Wl + 0 in the case of time-periodic deformations symmetric about the axis 8 = 0, 
the coefficient el in (2.1) will eventually cease to have the order of smallness O(s2)  
formally presumed for i t  in our analysis, which conveniently took the origin r = 0 to 
be fixed. But this formal limitation is obviated simply by redefining the origin to 
move with velocity W, in the axial direction. 

In the moving frame of reference, the liquid at infinity has axial velocity - Wl, so 
that - wl x1 = - Wl r cos 8 is added everywhere to the velocity potential $. The 
integral identity (1.5) is unaffected by this addition to $ (which obviously cancels 
on both sides of the identity), but the two surface integrals on the left-hand side 
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w t  = 0 :r R 

w t  = 0 la R 97 

FIGURE 3. (a) Shapes of bubble at quarter-period intervals when modes 2 and 3 are aligned and 
vibrate in quadrature, so producing maximum propulsion. ( b )  Shapes of bubbles at quarter-period 
intervals when mode 2 has axis 8' = 54.74', mode 3 in quadrature having axis 8' = 0, so that 
h = goo. 

admit different interpretations in the moving frame. The first is dCl/dt as before but 
now ensured to have zero mean value. The second is the sum ofl,, which remains zero 
in the absence of external forces, and the integral of Wlxln l  over S, which is 3 c a 3 ~ 1  
to  O(e2) .  Hence the argument in $$3 and 4, now referred to the moving frame, shows 
that 

where Wl is the velocity of the centroid in the moving frame, having zero mean value. 
Note that, in this description has zero mean value, so remaining unequivocally 
O(e2) ,  and (6.2) remains a uniformly valid second-order approximation for all t .  This 
improved, uniformly valid description can obviously be adapted to self-propulsion 
developed in any direction. 

Relaxation of assumption = U(e2) 
With regard to practical examples of parametrically excited shape oscillations, i t  is 
desirable to qualify the assumption that in (2.1) too is O(e2). This assumption was 
made to simplify the presentation of the analysis, but i t  can be relaxed without much 
extra complication. In $1  we mentioned the linearized equation for each s,(t) derived 
by Plesset & Mitchell (1956), which equation accounts for the effects of surface 
tension and for a prescribed time-dependent mean radius a{ l  +ea(t)} of the bubble. 
The frequency an of free vibrations in a mode n 2 2 is given by the well known 
formula a2, = (n- l ) (n+ 1)  ( n + 2 )  T/a3, where T is the surface-tension coefficient 
divided by the density of the liquid (Lamb 1932, p. 475) ; and of course the equation 
in question reduces to 6 ,  + a2, E ,  = 0 in the case = 0. When so(t) varies periodically 
with sufficient amplitude do a t  a frequency 2w not too far from 2cn, as when the 
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bubble pulsates in response to ambient pressure variations a t  this frequency (e.g. to 
sound waves with wavelength % a in the liquid), the equation has solutions that are 
oscillatory at  frequency w and grow in amplitude exponentially with t .  The growth 
is eventually arrested by nonlinear effects ; and ifw is close enough to un, the eventual 
amplitude in of E ,  can in principle be arbitrarily larger than the least b, needed to  
induce the parametric excitation. When viscous damping is ignored, the theory 
indicates that to/;, + 0 is possible as w -f u,. 

The assumption 6, = O(e2) is thus justified in a narrow range of prospective 
applications. With allowance for damping, however, and particularly with regard to 
examples where to is large enough for simultaneous excitation of two modes n and 
n+ 1, the assumption becomes doubtful. We shall not explore the matter fully here, 
merely noting as follows how our main results are generalized to include the effects 
of unrestricted 6,. 

The preferable course is to suppress e0 in (2 .1 )  and treat a as a (positive) function 
of t .  Then (2 .2 )  has to be replaced by 

(Note that this expression for $ satisfies the kinematic boundary condition to O(s) ,  
for arbitrary a(t) .  When it is substituted into the dynamic boundary condition, the 
coefficient of P,(,u) gives the differential equation for e,(t)  mentioned above.) The 
calculation of A based on I ,  = 0 can hence proceed as in §$2 and 3, leading with the 
modification included in (6.2) to 

(ai ,  + ~ U E , )  E , + ~  + O(e3).  
“ 9  

,=* 272 + 3 
Wl+Fq = ~ (6.3) 

In this result a(t)  is unrestricted. Taking a = ao(l  + E ,  cos 2 4  and E , ,  

before (6.1), we obtain in place of (6.1) 
as specified 

With a = p = in and e0 > 0, for example, vl is increased above the estimate (6.1) by 
a factor 1 +so. The propulsive effect is thus possibly reinforced by volume pulsations 
that excite modes n and n f  1 parametrically. 

Interpretation 

The explanation of dancing bubbles as reported by Kornfeld & Suvorov (1944) is 
already implied, but we finally need to focus the facts available. Generalized as in $5 
our theoretical result (6.2), or the more accurate (6.3), shows that self-propulsion 
generally arises whenever modes n and n+ 1 (n = 2,3,  ...) are both excited 
parametrically. The effect disappears only when the modes are in exact temporal 
phase. When the interacting modes depart from axial alignment, the vector mean 
velocity W of the bubble’s centroid is comparatively little diminished in magnitude 
but its direction is markedly changed. Thus, drifting of the relative temporal phase 
of the modes may momentarily arrest the self-propulsion ; drifting of their spatial 
phase may drastically change the direction in which the bubble is propelled. 

The simultaneous parametric excitation of spatially distinct modes has been much 
studied recently in another case, namely surface waves on a liquid layer supported 
by a vibrating platform (e.g. see Gollub & Meyer 1983; Ciliberto & Gollub 1985). It 
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has been found experimentally that, in particular when the amplitude and frequency 
2w of the excitation are near the intersection of the stability loci respective to two 
modes, nonlinear competition between the modes can result in either periodic or 
chaotic changes in their intensity on a long timescale. I n  fact, a mild form of both 
temporal and spatial chaos is conspicuous in a simple demonstration which the 
present authors have often watched. When a liquid layer is vibrated vertically a t  
fairly high frequency, such that many different modes with approximately the same 
wavenumber can be excited, the wave-pattern changes incessantly without ever 
exhibiting order, and the wandering cells of the wave-pattern vary erratically in 
amplitude. 

Comparable effects of competition between modes must be expected in the case of 
bubbles, and the mobility of each interacting mode over the whole of the symmetry 
group O(3)  seems likely to contribute to the chaotic character of possible motions. 
The effects demonstrated in this paper may propel bubbles along erratic paths as a 
by-product of independently chaotic interactions between en and enfl ; but the 
probable sensitivity of the interactions to small changes in conditions along any path 
may itself be a prime cause of chaos. When shape oscillations in modes n and n+ 1 
are excited, a bubble acquires propulsion with every direction possible - like a skater 
on ice holding a rocket, who too may move in an erratic path! 

A few experimental observations 
To conclude, we introduce a sample of our experimental findings, a full account of 
which we hope to present later (Ellis & Benjamin 1990). In  the experiments high- 
speed photography was used to record the behaviour of single small bubbles in 
distilled and degassed water, a depth 197 mm of which was contained in a cylindrical 
Pyrex beaker with internal diameter 172 mm and wall thickness 3.2 mm. A 
magnetostrictive ring, of height 25.4 mm, resting on the bottom of the beaker, was 
driven a t  a frequency 10 kHz, exciting a radially symmetric acoustic standing wave 
in the water and beaker. Because this frequency was close to a frequency of resonance 
for the composite mechanical system, virtually simple-harmonic oscillations of 
pressure in the water could thus be produced with a fixed spatial distribution and 
with easily controlled amplitude. (For a detailed discussion of this method of 
excitation in a related application, see Ellis 1955.) Helium was used to make the 
bubbles because of its comparatively low solubility in water. The bubbles, typically 
with radius a about 0.1 mm, were released singly from a pipette a t  the bottom of the 
beaker and would rise to become eventually suspended by Bjerknes forces above a 
central antinode of the standing wave, which was measured to be 46.9 mm below the 
free surface (i.e. a little further below than a quarter-wavelength of an untrapped 
wave a t  frequency 10 kHz in water). 

[Note that, for helium bubbles of this size a t  approximated atmospheric pressure, 
the frequency 10 kHz is far below resonance in respect of volume pulsations. 
Variations in volume are therefore in antiphase with simple-harmonic variations in 
ambient pressure, and so the Bjerknes force on such a bubble is aV@2, where a is a 
positive coefficient depending on a and 1; is the spatially varying pressure amplitude. 
Thus the force propels the bubble towards the centre of a radially symmetric 
standing wave ; and, a t  a point between the first antinode and the free surface, it may 
balance the buoyancy force on the bubble.] 

Suspended bubbles were photographed through a telescope by means of 
microsecond flash illumination. Because the bubbles gradually changed in size due to 
diffusion of the helium contents into or out of solution, decreasing when the water 
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FIGURE 4. Double-exposure flash photographs of vibrating bubbles, the interval between 
successive exposures being 0.05 s. 

was undersaturated or saturated and increasing when it was oversaturated, a variety 
of parametrically excited asymmetric behaviour was observable in the same bubble. 
It was found that each of the modes n = 2,3 ,4 ,5 ,6  could be excited, being inducible 
a t  more or less minimal pressure amplitude when the size of the bubble radius was 
such that the normal frequency a,/21t of the mode was close to 5 kHz. Thus, with 
surface tension taken t1o be 74 mN/m, the favoured values of a for n = 2 , 3  and 4 are 
indicated to  be 0.097, 0.144 and 0.189 mm respectively, which values were found to 
be borne out more or less. Close exploration of this aspect was hampered, however, 
by the need for the pressure amplitude to be high enough to maintain the suspension 
of the bubbles. At higher amplitudes (around 0.2 atm. and above), simultaneous 
excitation of different modes commonly occurred, leading to the propulsion of 
bubbles in wildly erratic paths through distances typically as much as 10 mm (i.e. 
hundreds of diameters). 

Three photographs of self-propelled bubbles are shown in figure 4. Each 
photograph is a double exposure spaced a t  an interval of 0.05 s, which corresponds 
to 250 periods of the shape oscillations a t  frequency 5 kHz. The fourth photograph 
shows a scale immersed in the water a t  the location of the bubbles; from it the sizes 
of the bubbles and the distances travelled by them in 0.05 s can be estimated. The 
first photograph catches two phases of near maximum deformation, spaced by about 
n, in mode n = 2. The direction of propulsion appears to  have been about 50" from 
the major axis of the first, upper left elliptical image, from which fact the calculations 
in $5  indicate that the propulsion was caused by interaction with shape oscillations 
in mode n = 3, whose axis was directed a t  about 24" from the axis of mode n = 2. The 
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presence of mode n = 3 is not directly conspicuous in the photograph ; but another 
sign of its being present is that, unlike the first image, the highlight in the second 
image is displaced from the centre. 

The distance travelled by the bubble in the first photograph was 0.50 mm in 0.05 s, 
so that its speed was 10 mm/s, and its radius was about 0.13 mm. With this value 
of a and with allowance that 8' = 24', the formula (6.1) gives = 2.20 x lo3 x 
c2e3 mm/s when a = p. It may be estimated from the first photograph that e2 was 
about 0.08, whence the measured speed would be recovered if e3 = 0.06 roughly. This 
value seems reasonable, and a higher value would be predicted if the modes n = 2 and 
n = 3 were not exactly out of phase. The theory thus appears to be broadly 
compatible with the observations. 

The second photograph, to  the right of the first, plainly demonstrates a propulsive 
interaction between modes n = 3 and n = 4. The velocity in a plane perpendicular to 
the line of sight is about the same as the first case; however, because the second 
image is smaller and less well in focus than the first, it appears that the bubble was 
also propelled away from this plane. The image on the right of the third photograph 
indicates the presence of mode n = 5, but the image on the left suggests mode 
n = 2 rather than n = 4 as might be expected. There is nevertheless no general reason 
against mode n = 2 being excited as well as a propulsive interaction between modes 
n = 4 and n = 5. 

We warmly appreciate the privilege of contributing to  this volume of the Journal 
of Fluid Mechanics in honour of George Batchelor, to whom both of us are indebted 
scientifically. One of us (T.B.B.) is particularly indebted for sterling advice and 
encouragement a t  an early stage of his career. 
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